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Notation: The following mathematical notation has been used:

∑n
i=1 Ai Sum up the values Ai with i ranging from 1 to n.

∏n
i=1 Ai Multiply the values Ai with i ranging from 1 to n.

n! Factorial – i.e.
∏n

i=1 i = 1 × 2 × 3 × ... × (n − 1) × n. (0! = 1, by definition.)
(

n
r

)

Combinatorial nCr – the number of ways of choosing r distinct objects out of
a total of n distinct objects. Equal to n!

r!(n−r)! .

expx and lnx are the natural (base e) exponential and logarithmic functions.

1 Equiprobable variants

Problem: Given a library L of size L sequences, where each sequence is chosen at random from a set V
of size V of equiprobable variants, we wish to calculate the expected number of distinct sequences in L.

Let vi be one of the V possible variants. Since the variants are equiprobable, the mean number of
occurrences of vi in L is λ = L

V . For λ ≪ L (i.e. V ≫ 1), the actual number of occurrences of vi in L is
essentially independent of the number of occurrences of any other vj , j 6= i, so is well-approximated by
the Poisson distribution

P (x) =
e−λλx

x!
, x = 0, 1, 2, ... (1)

where P (x) denotes the probability that vi occurs exactly x times in L. The probability that vi occurs
at least once in L is 1 − P (0) = 1 − e−λ = 1 − e−L/V . Hence the expected number of distinct variants
in the library is C ≈ V (1 − e−L/V ) and the fractional completeness is F = C

V ≈ 1 − e−L/V . If we wish
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to generate a library that will have an expected completeness of, for example, 95% then we must solve
F = 0.95 ⇒ 1 − e−L/V = 0.95 ⇒ L = −V ln 0.05 ≈ 3V , i.e. we require a library size three times the
number of possible variants.

If however we wish to generate a library that has a 95% probability of being 100% complete then
we must do a little more work. The probability that every variant vi is represented in L is Pc ≡
P (complete) ≈

∏

i(1 − e−L/V ) = (1 − e−L/V )V . Solving for L gives

L = −V ln
(

1 − exp
(

ln Pc

V

))

≈ −V ln
(

1 −
(

1 + ln Pc

V

))

= −V ln
(

− ln Pc

V

)

,

(2)

where the approximation holds provided V ≫ − lnPc (i.e. for any Pc that is not approximately 0)1.
Since one is generally interested in Pc values of order 90%-100% (and certainly > 1%) this condition is
generally true. For an example, if Pc = 95% and V = 1000000, then we obtain L ≈ 17×106. I.e. in order
to generate a library which has a 95% probability of being complete, we require L = 17 × 106.

These two distinct problems – a library that has an expected completeness of 95% and a library that
has a 95% probability of being 100% complete – have sometimes been confused in the literature.

GLUE is a simple C++ programme for calculating the expected completeness of a given library, or the
library size required to obtain a desired completeness. It is available from the web address given on page
1.

2 Error-prone PCR

Problem: Given a library L of size L comprising variants of a sequence of N nucleotides, into which
random point mutations have been introduced, we wish to calculate the expected number of distinct
sequences in L.

We denote the mean number of point mutations per sequence by λ and assume that λ ≪ N . Then
the number of point mutations per sequence may be well-described by the Poisson distribution

P (x) =
e−λλx

x!
, x = 0, 1, 2, ... (4)

where P (x) is the probability of there being exactly x mutations in the sequence. The exact mechanics of
error-prone PCR may result in some deviation from Poisson statistics and it is left to the reader to judge
how serious these deviations may be in her/his particular situation2. The number of possible distinct
sequences with exactly x mutations is given by

Vx =

(

N
x

)

3x =
3xN !

x!(N − x)!
(5)

since
(

N
x

)

is the number of ways of choosing x bases to mutate and each of these may be mutated to any
of three other bases giving the 3x term. Let Lx denote the sublibrary of L containing those sequences in
L with exactly x mutations and let Lx denote the expected size of Lx. Then Lx = P (x) × L. Assuming
that these sequences are equiprobable, the expected completeness of Lx is given by 1−e−Lx/Vx , provided

1The interested reader is referred to Chapter IV.2 of Feller (1968) for a more rigorous approach, which results in

Pm(L, V ) = exp(−V e−L/V )
(V e−L/V )m

m!
, (3)

where Pm(L, V ) is the probability that exactly m variants are not present in L. For m = 0 (i.e. all variants are present)

we have Pc = exp(−V e−L/V ) ⇒ L = −V ln(− ln Pc
V

), as above. Also, since equation 3 is simply the equation for a Poisson

distribution with mean V e−L/V , we see that the mean number of variants not present is V e−L/V , so the mean number of
variants present is V − V e−L/V = V (1 − e−L/V ), also as above.

2The programme PEDEL (see below) has recently been updated to include the ‘PCR distribution’ of Sun (1995) as an
alternative to the Poisson distribution. This distribution takes into account the number of PCR cycles and the efficiency of
each cycle.
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Vx ≫ 1 (see §1). This is generally the case for x ≥ 1, especially if N is large, but not true for x = 0 for
which V0 = 1. The expected number of distinct sequences in Lx, x 6= 0, is therefore given by

Cx ≈ Vx(1 − e−Lx/Vx)

= 3xN !
x!(N−x)!(1 − exp(− e−λλxL(N−x)!

3xN ! )), x = 1, 2, 3, ...
(6)

There is only one possible variant in L0 (the original unmutated sequence) so if L0 ≫ 1 then C0 ≈ 1.
Since L0 = e−λL and L is generally large, this will only not be the case when λ is large. In this case the
sum of the remaining Cx is very large and the contribution of C0 is negligible. Hence it suffices to always
approximate the first term in

∑

∞

x=0 Cx by 1. So the total expected number of distinct sequences is

C =
∑

∞

x=0 Cx

≈ 1 +
∑

∞

x=1 Vx(1 − e−Lx/Vx)

= 1 +
∑

∞

x=1
3xN !

x!(N−x)!(1 − exp(− e−λλxL(N−x)!
3xN ! )).

(7)

At face value the infinite sum may look rather daunting, but it turns out that we can make a few
approximations. When Lx is small compared with the total number of possible variants Vx we may
expect that almost every member of Lx will be distinct, in which case Cx ≈ Lx. This occurs for large x
values. Conversely, when Lx is large compared with Vx we may expect Lx to sample all possible variants
in which case Cx ≈ Vx. This occurs for small x values. We now derive conditions which describe where
we can make these approximations and find that in most cases there is only one x value for which we can
not use one approximation or the other.

Since eǫ ≈ 1 + ǫ for |ǫ| ≪ 1 (or 1− e−ǫ ≈ ǫ), in the case where Lx

Vx
≪ 1, Cx = Vx(1− e−Lx/Vx) reduces

to Lx. In fact this approximation is accurate to 5% for |ǫ| < 0.1. We now derive a sufficient condition

on x, given L, N and λ, such that Lx

Vx
< 0.1. Now (N−x)!

N ! = 1
N(N−1)(N−2)...(N−x+1) ≤

(

1
N−x+1

)x

, so

Lx

Vx
= e−λλxL

3x

(N−x)!
N ! ≤ Le−λ

(

λ
3(N−x+1)

)x

. For x ≫ λ, P (x) and hence Lx = P (x)×L become vanishingly

small and Lx

Vx
≪ 1 trivially3. Hence, since λ ≪ N , we need only consider x ≪ N or, for concreteness, let

us assume that x < N
3 . Then N − x + 1 > N − x > 2N

3 and Lx

Vx
< Le−λ

(

λ
2N

)x
. Again since λ < N , this

decreases as x increases. Also

Le−λ
(

λ
2N

)x
= 0.1

⇔ x ln λ
2N = ln 0.1

Le−λ

⇔ x =
(

λ + ln 0.1
L

)

/ ln λ
2N

≈ λ−2.30−ln L
lnλ−0.69−ln N .

(8)

Thus for all x > λ−2.30−ln L
ln λ−0.69−lnN , Lx

Vx
< 0.1 and Cx ≈ Lx. We shall denote this threshold by xu, i.e.

xu =

(

λ + ln
0.1

L

)

/ ln
λ

2N
(9)

For example, for L = 1012, λ = 4 and N = 1000, xu = 4−2.30−ln 1012

ln 4−0.69−ln 1000 ≈ 4.2 (Figure 1).
Note that xu is mostly dependent on λ. In particular for large λ (e.g. λ > 30 in the above example)

xu becomes negative (the denominator is always negative since λ < N) and then Cx ≈ Lx for all x

(Figure 2). This may be inferred from the e−λ factor in Lx

Vx
= e−λλxL

3x

(N−x)!
N ! which goes rapidly to 0

with increasing λ. On the other hand, as λ → 0, xu becomes −2.30−lnL
ln λ−0.69−ln N , where the magnitude of the

denominator increases with decreasing λ and again xu decreases. This may also be inferred from the
equation for Lx

Vx
: as λ → 0, e−λ → 1 and λx → 0. In fact the only ways to make xu larger are to increase

L or decrease N – though the condition λ ≪ N constrains the latter to some extent – for example, for
L = 1020, N = 100 and λ = 1, xu ≈ 8.9. Figure 2 illustrates the dependence of xu on L, N and λ. It is
clear that for reasonable values of L, N and λ, xu <∼ 10.

3This can be shown rigorously – but is somewhat involved – and is valid provided N is sufficiently large or λ is sufficiently
small (e.g. for λ ≤ 0.1N and x ≥ N

3
, we require N >∼ 20 for L <∼ 108 and N >∼ 30 for L <∼ 1014 etc.). These limitations

do not, however, apply to the programme PEDEL (see below), in which Lx
Vx

is calculated directly rather than using xu and

xl (see below).
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Figure 1: Plot of Cx (solid bold lines) – the expected number of distinct sequences with exactly x point mutations,
calculated using equation 6, for a library size L = 1012, sequence length N = 1000, and mean mutation rate λ = 4
(left) and λ = 20 (right). Also plotted is Lx (thin dashed lines) – the total expected number of sequences with
exactly x point mutations. Using equation 9, xu = 4.2 (left) and 2.2 (right) while equation 16 gives x′

u = 3.9
and 1.98 respectively. For x ≥ x′

u, Cx is very well approximated by Lx. In the case λ = 20, C =
∑

∞

i=0
Cx is

dominated by the region where the Lx approximation holds.

Figure 2: Plot of the threshold value xu = (λ + ln 0.1
L

)/ ln λ
2N

as a function of mutation rate λ for different
library sizes L (left) and different sequence lengths N (right). The bold lines correspond to the case L = 1012

and N = 1000. For large λ, xu becomes negative; also xu increases with increasing L and decreasing N , but for
all practical library sizes and for N >∼ 100, xu <∼ 10.
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Conversely, for Lx

Vx
sufficiently large, 1 − e−Lx/Vx ≈ 1 and Cx = Vx(1 − e−Lx/Vx) reduces to Vx. In

fact this approximation is good to 5% for Lx

Vx
> 3. We now derive a sufficient condition on x, given L, N ,

and λ, such that Lx

Vx
> 3. Since (N−x)!

N ! = 1
N(N−1)(N−2)...(N−x+1) ≥

(

1
N

)x
, we have Lx

Vx
= e−λλxL

3x

(N−x)!
N ! ≥

Le−λ
(

λ
3N

)x
, which increases as x decreases. Also

Le−λ
(

λ
3N

)x
= 3

⇔ x ln λ
3N = ln 3

Le−λ

⇔ x =
(

λ + ln 3
L

)

/ ln λ
3N

≈ λ+1.10−ln L
ln λ−1.10−ln N .

(10)

Thus for all x < λ+1.10−ln L
ln λ−1.10−lnN , Lx

Vx
> 3 and Cx ≈ Vx. We shall denote this threshold by xl, i.e.

xl =

(

λ + ln
3

L

)

/ ln
λ

3N
(11)

For example, for L = 1012, λ = 4 and N = 1000, xl = 4+1.10−ln 1012

ln 4−1.10−ln 1000 ≈ 3.4.
In order to calculate the expected total number C of distinct sequences in L, given by equation 7, we

only need to calculate Cx in full (using equation 6) for x values where 0.1 < Lx

Vx
< 3. We now show that

in most cases there is only one such x value. Now

Vx+1

Vx
=

3x+1N !

(x + 1)!(N − x − 1)!

x!(N − x)!

3xN !
=

3(N − x)

x + 1
(12)

and
Lx+1

Lx
=

e−λλx+1L

(x + 1)!

x!

e−λλxL
=

λ

x + 1
(13)

so
Lx+1/Vx+1

Lx/Vx
=

Lx+1

Lx

Vx

Vx+1
=

λ

x + 1

x + 1

3(N − x)
=

λ

3(N − x)
. (14)

For x < N − λ
3 we have λ

3(N−x) < 1, in which case Lx

Vx
decreases as x increases. Since λ ≪ N this will

be the case for almost all x and in particular for x ≤ xu. If Lx+1/Vx+1

Lx/Vx
< 1

30 between x = xu and x = xl

then there will be at most one x value with 0.1 < Lx

Vx
< 3. But

Lx+1/Vx+1

Lx/Vx
≥

1

30
⇒ λ ≥

3(N − x)

30
=

N − x

10
≈

N

10
(15)

where in the last approximation we have assumed x < xu ≪ N in general. So for λ < N
10 , at most one

Cx value need be calculated in full (and with the initial assumption that λ ≪ N , this will generally be
the case).

While we have shown that there is generally at most one x value with 0.1 < Lx

Vx
< 3, it is not

necessarily the case that there is at most one x value with xl < x < xu since we used conservative
approximations in the derivations of xu and xl. Since we have shown (Figure 2) that, for all intents and
purposes, xu <∼ 10 for reasonable values of N (e.g. N >∼ 100), for x in the vicinity of xu and xl, we

may approximate (N−x)!
N ! = 1

N(N−1)(N−2)...(N−x+1) by 1
Nx , in which case the condition Lx

Vx
= 0.1 implies

x = (λ + ln 0.1
L )/ ln λ

3N . So in most cases we may replace xu in equation 9 with

x′

u =

(

λ + ln
0.1

L

)

/ ln
λ

3N
(16)

and provided λ <∼ N
10 , x′

u − xl < 1.
Using the above, equation 7 reduces to

C =
∑

∞

x=0 Cx

≈ 1 +
∑s1

x=1 Vx +
∑s2−1

x=s1+1 Cx +
∑

∞

x=s2
Lx

= 1 +
∑s1

x=1 Vx +
∑s2−1

x=s1+1 Cx + L −
∑s2−1

x=0 Lx

= 1 +
∑s1

x=1 Vx +
∑s2−1

x=s1+1 Cx + L × (1 −
∑s2−1

x=0 P (x))

(17)
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Figure 3: Plot of the total expected number of distinct sequences C (bold lines) as a function of mutation rate λ
(left), library size L (centre) and sequence length N (right). Left: For N = 1000 there are 41000 possible distinct
sequences and as λ increases a greater number of these are sampled. The C versus λ plot levels off when C is
limited by the total library size L (thin line). Centre: Even with only 4 (i.e. λ) mutations there are ∼3 × 1012

possible sequences while with 8 (i.e. 2λ) mutations there are ∼2 × 1023 possible sequences. Thus for λ = 4, even
in very large libraries, the degree of redundancy is fairly low and C is of the same order as L. The dashed line
plots C = L for reference. Right: C changes very little with N for a fixed value of λ (in which case the mean
mutation rate per nucleotide scales inversely with N). For N = 100 there are ∼1015 possible sequences with 8
mutations, so a library of size 1012 (thin line) still has a fairly low (factor of ∼4) degree of redundancy.

where s1 = ⌊xl⌋ and s2 = ⌈xu⌉ are the greatest integer less than xl and the least integer greater than
xu respectively, Vx is calculated using equation 5, Cx is calculated using equation 6 (if required, i.e. if
s1 + 1 >| s2 − 1), and P (x) is calculated using equation 4. Note that the last term in the sum can not be
ignored – it dominates for larger λ (e.g. see Figure 1).

Thus, in order to calculate the total expected number of distinct sequences C in a library of size L,
given N and λ, we first use equations 9 (or 16) and 11 to calculate xu and xl and then we calculate the
sum in equation 17. Examples are shown for various L, N and λ in Figure 3. A simple C++ programme,
dubbed PEDEL, to calculate C, Px, Lx, Vx and Cx, for given λ, N and L, may be found at the web address
given on page 1. While xu and xl are conceptually useful, PEDEL simply calculates Cx using equation 6
until Lx

Vx
< 0.1 (at x = s, say) and then uses L × (1 −

∑s
x=0 P (x)) for the remaining Cx.

3 Recombination of near-identical sequences

Problem: Given a library L of L sequences generated by random recombination of two near-identical
genes differing at only a small number of known nucleotide (or codon) positions, we wish to calculate the
expected number of distinct variants in L.

As an example, Raillard et al. (2001) start with two sequences of 1425 nucleotides differing at 9 po-
sitions, giving a total of 29 = 512 possible daughter variants. They screened a library of L = 1600
shuffled variants. It is of interest to calculate what proportion of the 512 possible variants we may expect
the library to contain. Clearly this will depend upon (a) the mean number of crossovers introduced into
the daughter sequences and (b) the spacing of the variable nucleotides, since nucleotides that are closely
spaced are less likely to be separated by a crossover than nucleotides that are far apart in the sequence.

Suppose we start with two sequences S and S′, each comprising N nucleotides, and suppose that S
and S′ differ at M nucleotide positions with the varying nucleotides being respectively A1, A2,..., AM and
A′

1, A′

2,..., A′

M . For convenience we write S = A1A2...AM and S′ = A′

1A
′

2...A
′

M where we have omitted
the intervening nucleotides that do not differ between S and S′. There are 2M possible daughter variants
Dk = Ak

1Ak
2 ...Ak

M where each Ak
i = Ai or A′

i. It is convenient to relabel the variants, not by the positions
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of the nucleotides, but by the positions of crossovers. Thus we map each daughter variant Dk onto a
binary sequence (sequence of 1’s and 0’s) Bk = bk

1bk
2 ...b

k
M−1 where bk

i = 1 if there is an odd number (1, 3,

5,...) of crossovers between Ak
i and Ak

i+1 and bk
i = 0 if there is an even number (0, 2, 4,...) of crossovers

between Ak
i and Ak

i+1. Clearly one crossover between consecutive variable nucleotides produces exactly
the same daughter variant as 3, 5, 7,... crossovers, and similarly for an even number of crossovers. As
an example, the daughter variant Dk = A1A2A3A

′

4A
′

5A6A7... maps to Bk = 001010... . Note that the
‘inverse’ sequence D′

k = A′

1A
′

2A
′

3A4A5A
′

6A
′

7..., formed from Dk by replacing Ai by A′

i and vice versa,
maps to the same binary sequence B′

k = 001010... = Bk. There are 2M−1 such binary sequences, and
a one-to-one correspondence between the binary sequences and those daughter variants starting with
A1 and a similar one-to-one correspondence between the binary sequences and those daughter variants
starting with A′

1.
Suppose that the mean number of crossovers per daughter sequence is λ and suppose λ ≪ N (large

λ values correspond to small fragments in the reassembly reaction – a situation generally disfavoured
by the requirement for annealing of complementary, overlapping fragments). We shall assume that the
number of crossovers x in a particular daughter sequence follows a Poisson distribution with mean λ so
that

P (x) =
e−λλx

x!
, x = 0, 1, 2, ... (18)

where P (x) is the probability of there being exactly x crossovers in the sequence. Furthermore, we assume
that the crossovers in a particular daughter sequence are randomly distributed with the proviso that a
crossover cannot occur in the position immediately following a varying nucleotide. By using the Poisson
distribution, we are ignoring some of the mechanics of the process (see for example Moore & Maranas
2000; Moore et al. 2001) and so the reader with knowledge of a more accurate probability distribution in
his/her own particular situation may wish to modify the equations/results accordingly.

We now calculate the relative probabilities of each binary sequence Bk. As mentioned above, these
probabilities will depend on the relative spacing of the variable nucleotides Ai in S. If S has N nucleotides,
of which M are varying, then it has N −M −1 potential crossover points. Let ni be the number of spaces
between Ai and Ai+1 (so that

∑M
i=0 ni = N − 1, where n0 and nM represent the number of spaces before

A1 and after AM respectively). The probability of there being x crossovers between Ai and Ai+1 follows

a Poisson distribution with mean (ni−1)λ
N−M−1 . Hence

P (bi = 0) = P (x = 0) + P (x = 2) + P (x = 4) + ...

= e−(ni−1)λ/(N−M−1)
∑

∞

x=0,2,4,...
1
x!

(

(ni−1)λ
N−M−1

)x

= e−(ni−1)λ/(N−M−1) cosh( (ni−1)λ
N−M−1 )

= e−(ni−1)λ/(N−M−1)
[

e(ni−1)λ/(N−M−1)+e−(ni−1)λ/(N−M−1)

2

]

= 1
2

[

1 + e−
2(ni−1)λ

N−M−1

]

(19)

where cosh θ is the hyperbolic cosine function defined by cosh θ = eθ+e−θ

2 . The third equality follows from

the identity eθ =
∑

∞

x=0
θx

x! . Similarly sinh θ is the hyperbolic sine function defined by sinh θ = eθ
−e−θ

2 =
∑

∞

x=1,3,5,...
θx

x! . So we have also

P (bi = 1) = P (x = 1) + P (x = 3) + P (x = 5) + ...

= e−(ni−1)λ/(N−M−1)
∑

∞

x=1,3,5,...
1
x!

(

(ni−1)λ
N−M−1

)x

= e−(ni−1)λ/(N−M−1) sinh( (ni−1)λ
N−M−1 )

= e−(ni−1)λ/(N−M−1)
[

e(ni−1)λ/(N−M−1)
−e−(ni−1)λ/(N−M−1)

2

]

= 1
2

[

1 − e−
2(ni−1)λ

N−M−1

]

.

(20)

For 2(ni−1)λ
N−M−1 ≪ 1, i.e. for closely spaced variable nucleotides, this approximates to (ni−1)λ

N−M−1 and is small.
For the example of Raillard et al. (2001), M = 9, so there are eight P (bi = 0) and eight P (bi = 1) prob-

abilities to be calculated. All possible products P (Bk) =
∏8

i=1 P (bk
i ) =

∏8
i=1 e−(ni−1)λ/(N−M−1)sch

(

(ni−1)λ
N−M−1

)

=

7
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Figure 4: The expected number C (thin lines) of distinct sequences in a library of size L as a function of λtrue

for libraries of sizes 1000, 4000, 16000, 64000 and 256000 (listed from lower curve to upper curve). In all cases
the specified sequence length is N = 500 nucleotides and the number of variable nucleotides is fixed at M = 9.
Left: variable nucleotides at positions 50, 100, 150, 200, 250, 300, 350, 400, 450. Centre: variable nucleotides at
positions 100, 110, 120, 130, 140, 150, 160, 170, 180. Right: variable nucleotides at positions 100, 102, 104, 106,
108, 110, 112, 114, 116. C increases with increasing L and increasing λ and is greater if the variable nucleotides
are well-spaced along the parent sequences. C levels off at the total number of possible distinct sequences (512 in
this case, plotted as a bold line) unless constrained by L (e.g. for L = 1000, above). For very large λ (especially
for well-spaced variable nucleotides), C becomes independent of λ.

exp

(

−λ
∑

8

i=1
(ni−1)

N−M−1

)

∏8
i=1 sch

(

(ni−1)λ
N−M−1

)

, where sch θ = cosh θ if bk
i = 0 and sch θ = sinh θ if bk

i = 1, can

then be calculated (there are 28 = 256 possibilities – easily calculable by computer). Each corresponds
to the two equiprobable inverse sequences represented by the same binary sequence and, when divided

by 2, these 256 products give the relative probabilities Qk = P (Bk)
2 of the 512 possible daughter variants

Dk.
Given a particular daughter variant Dk, the probability that a given sequence in the library is not Dk

is 1 − Qk so the probability that Dk does not occur at all in a library of size L is (1 − Qk)L. Hence the
probability that Dk does occur in the library is 1 − (1 − Qk)L and the expected number of sequences in

the library is
∑512

k=1 1 − (1 − Qk)L (or, alternatively and as in §1, ≈
∑512

k=1 1 − exp(−LQk).)
In general then, for two parent sequences of length N that differ at M positions, a mean crossover

rate of λ and a library of size L, the mean expected number of distinct daughter variants in the library
will be

C =
∑

k 1 − (1 − Qk)L

= 2
∑1

b1=0

∑1
b2=0 ...

∑1
bM−1=0

[

1 −

(

1 − 1
2 exp

(

−λ
∑M−1

i=1
(ni−1)

N−M−1

)

∏M−1
i=1 sch

(

(ni−1)λ
N−M−1

)

)L
]

(21)
where sch θ = cosh θ if bi = 0 and sch θ = sinh θ if bi = 1. C increases with library size and is larger if
the variable nucleotides are well-spaced rather than being clustered together (Figure 4).

Up until now we have assumed that λ ≡ λtrue is known. It is apparent however that many crossovers
may not in fact be observable – e.g. two crossovers between two adjacent variable nucleotides looks like
no crossover at all. Similarly, a crossover at either end of the sequence – not containing any variable
nucleotide – is also not observable. In fact the observed crossovers are exactly equivalent to the presence
of a ‘1’ in the binary sequence Bk corresponding to a given daughter sequence. Hence the mean number
of observed crossovers per sequence is

λobs =
∑

k

P (Bk)ρ(Bk) (22)
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where ρ(Bk) is the number of ‘1’s in the binary sequence Bk. Now
∑

k P (Bk)ρ(Bk) is a sum of the form
∑

j aj exp(bjλ
true) for some values aj , bj, which in general is not analytically soluble for λtrue in terms

of λobs. However, by trying various values of λtrue and calculating λobs, one may find by trial and error
the value λtrue that reproduces a given λobs.

Note that it is impossible to have λobs > M−1
2 : if λtrue is very large, then the variable nucleotides will

be essentially randomly assigned in each daughter sequence and all possible daughters will be essentially
equally likely – giving a 50 per cent probability of an observable crossover between any two variable
nucleotides (equation 20, as λ → ∞). Since we assume that crossovers cannot occur immediately following
a variable nucleotide, if two variable nucleotides are adjacent in the parent sequence, then they will
remain linked in all daughter sequences and the number of possible daughter sequences will be reduced
accordingly. Once λtrue is large enough so that all possible daughter sequences are essentially equally
likely, increasing λtrue further will have no effect on the mean number of distinct sequences C in the
library. At this point C depends only on L, the library size. The problem essentially reduces to the
problem of equiprobable variants of §1.

A simple C++ programme to calculate C, P (bi = 0), P (bi = 1), P (Bk), λobs and λtrue, given N , M ,
L, either λobs or λtrue, and the positions of the variable nucleotides, may be found at the web address
given on page 1. For most intents and purposes the programme may be used equally well on sequences
of nucleotides or sequences of codons. The only proviso is that if codons are treated as the basic unit,
then one tacitly ignores that crossovers occurring within variable codons may or may not lead to an
observable crossover, and may in fact lead to new amino acids not present in either parental sequence.
In the Raillard et al. (2001) case with N = 1425, M = 9, L = 1600, λobs ∼ 2 and the positions of the
variable nucleotides being 250, 274, 375, 650, 655, 757, 763, 982, 991, DRIVeR estimates that λtrue ∼ 10,
and that the library is expected to contain ∼161 distinct variants out of a total of 512 possible variants.
The biggest factor leading to the low diversity is the close spacing of the variable nucleotides 650 & 655,
757 & 763, 982 & 991, between which crossovers are unlikely to occur.
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